Effects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis
نویسندگان
چکیده
Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest's nutrient status; however, few studies of N addition appear to incorporate the nutrient status in tropical forests, possibly due to difficulties in explaining how this status is maintained. We used a meta-analysis to explore the consequences of the N enrichment on C and N cycles in tropical montane and lowland forests. We tracked changes in aboveground and belowground plant C and N and in mineral soil in response to N addition. We found an increasing trend of plant biomass in montane forests, but not in lowland forests, as well as a greater increase in NO emission in montane forest compared with lowland forest. The N2O and NO emission increase in both forest; however, the N2O increase in lowland forest was significantly even at first time N addition. The NO emission increase showed be greater at first term compared with long term N addition. Moreover, the increase in total soil N, ammonium, microbial N, and dissolved N concentration under N enrichment indicates a rich N status of lowland forests. The available evidence of N addition experiments shows that the lowland forest is richer in N than montane forests. Finally, the greater increase in N leaching and N gas emission highlights the importance of study the N deposition effect on the global climate change.
منابع مشابه
Long-term change in the nitrogen cycle of tropical forests.
Deposition of reactive nitrogen (N) from human activities has large effects on temperate forests where low natural N availability limits productivity but is not known to affect tropical forests where natural N availability is often much greater. Leaf N and the ratio of N isotopes (δ(15)N) increased substantially in a moist forest in Panama between ~1968 and 2007, as did tree-ring δ(15)N in a dr...
متن کاملNitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.
Our meta-analysis of 126 nitrogen addition experiments evaluated nitrogen (N) limitation of net primary production (NPP) in terrestrial ecosystems. We tested the hypothesis that N limitation is widespread among biomes and influenced by geography and climate. We used the response ratio (R approximately equal ANPP(N)/ANPP(ctrl)) of aboveground plant growth in fertilized to control plots and found...
متن کاملRelationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.
Tropical rain forests play a dominant role in global biosphere-atmosphere CO(2) exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the ...
متن کاملAltered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis.
Plant invasion potentially alters ecosystem carbon (C) and nitrogen (N) cycles. However, the overall direction and magnitude of such alterations are poorly quantified. Here, 94 experimental studies were synthesized, using a meta-analysis approach, to quantify the changes of 20 variables associated with C and N cycles, including their pools, fluxes, and other related parameters in response to pl...
متن کاملREVIEW AND SYNTHESIS Relationships am ong net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis
Tropical rain forests play a dominant role in global biosphere-atmosphere C O 2 exchange. A lthough climate and nutrient availability regulate net primary production (NPP) and decomposition in aU terrestrial ecosystems, the nature and extent o f such controls in tropical forests remain poorly resolved. We conducted a meta-analysis o f carbon-nutrient-chmate relationships in 113 sites across the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015